If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+14z-15=0
a = 1; b = 14; c = -15;
Δ = b2-4ac
Δ = 142-4·1·(-15)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-16}{2*1}=\frac{-30}{2} =-15 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+16}{2*1}=\frac{2}{2} =1 $
| 2.3+10m=8.16 | | p=4/3*3.14*(83)^3 | | W(2w+1)=0 | | 10x-9=35x+11 | | 1.87x=0.7 | | 3.1+10m=6.56 | | 4p=-19.6 | | (h-8)²=0 | | (x+6)=(3x-4) | | y/25=-28 | | 18^5x=7^x-4 | | -28q=448 | | x-4/3=22 | | 13⋅m⋅0= 13⋅0⋅m | | -7(x-2)+3=7 | | d/5−3=3 | | -15.96=u+2.44 | | 50=2w+w | | v=4/3*3.14*(83)^3 | | x+972=603 | | 365+x=-397 | | -109-x=2(31-5x) | | x+-540=-1114 | | b/3=2.43 | | 447-x=332 | | f-2.9=9.1 | | -55-x=-50 | | 24/x+16=52 | | x-56=-138 | | h-556=47 | | (g+12)+(g-7)-(2-3G)=0 | | w+585=209 |